Guided Growth

Interview: Rachel Armstrong, Innovative Scientist Who Wants to Grow Architecture

The next guest in our interview series is Dr. Rachel Armstrong, interdisciplinary practitioner and sustainability innovator. Armstrong’s work uses all manners of media to engage audiences and bring them into contact with the latest advances in science and their real potential through the inventive applications of technology, to address some of the biggest problems facing the world today. She designs solutions for the built and natural environment using advanced new technologies and smart chemistry.

You may know Armstrong from her essay Self-Repairing Architecture and her research in living architecture and protocell technology, a new material that possess some of the properties of living systems and can be manipulated to grow architecture.

We recently talked with Rachel Armstrong about living buildings, Venice’s foundations, millennial nature and how to improve our future.

You work somewhere between science and architecture, how would you define your work and how did you start?

I’m a concept and ideas explorer. I like to test the ideas that I have to see how they might work and then re-apply what I learn during my experiments to further refine my ideas. I use a range of different methods and don’t comfortably fit in any particular discipline although I am very happy working across disciplines and learn a great deal from my collaborations.

How did I start? It has been something that I’ve done since childhood, when I was a child I could do art and science, English and math, anything. I was just interested in things, even when I went to university I didn’t want to specialize particularly. I remember when I was about five years old I put my hands down in the earth just trying to figure out what it was made of. I thought this substance was so special that perhaps we could use it to make incredible things. I guess it’s an interest that never died. At university I studied medicine because my ambition was to design and engineer with the natural world, it was the only discipline that allowed me to do this with living things. There wasn’t synthetic biology at that time. Biology itself was an incredibly backward looking practice. Of course now it’s all changed with advances in biotechnology, but when I was a young student it was only really medicine that gave me the opportunity to design and engineer, keeping art and science together. Part of my medical training was to choose a sabbatical. I went to India and worked with people with leprosy and observed how people could restore their lives by bringing together issues of identity, the body, technology and the natural world through art and technology. So, right from the beginning of my career, I never limited myself to one discipline and when I did I got incredibly frustrated, so that’s really how I started.

The integration between architecture and biological systems is already reality, there are some precedents, like the living bridges of Cherrapunji, in northeast India. Here the locals learned to “drive” the roots of the Ficuselastica tree to build bridges able to support the weight of 50 people and reach 30 meters in length. What could 21th century architects learn from these dynamic construction principles? How we could apply these methods to urban areas?

You are absolutely right! Nature itself is larger than the architecture scale. If we actually think about life on this Earth and the mega structures that are produced by living things, for example the algal blooms and aspen trees, which are giant multiple bodies sometimes comparable to cities in their scale, we can see that nature is geological scale in terms of its effects. What we have to learn from nature is to understand its technology. Understanding form and function of natural systems is not enough – we need to understand those processes through which these outputs are produced and how the outcomes are entangled. Culturally, in the modern Western world, we use machines as our technological platform. Machines come from a very particular way of understanding the world. They have a unique ontology that is born from a very particular set of ideas. Most notably machines assume reality is made of objects, which can be defined geometrically and hierarchically linked. It also assumes that the world is at effective equilibrium where matter is passive, so machines need external energy for their functional object hierarchies to do useful work. Nature doesn’t work like that. Its technology deals with processes that we can describe as ‘metabolism’. These are functional chemical interactions that are never static, or the systems are no longer living.

What we have to learn from nature is its technology

Nature needs to do work to be living but it doesn’t require humans to provide external energy. However, metabolic processes can be prolonged by external energy sources such as, the sun and carbon dioxide. There is an internal agency in the technology of nature that can create effects that don’t work in the same way as machines. I think that if we look at a very low level of what nature is – at the level of chemistry – and unravel how she produces her effects we will begin to understand these secrets and much more ecological forms of technology. These systems won’t be machines but will be a different kind of technological platform, which we can call an ‘assemblage’, with completely different outcomes and impacts on the environment to those we associate with the industrial age.

Do you thing “bio-architecture” can become the main architecture in a future next natural world?

Many people adopt the term “bio-architecture” in many different ways. Some refer to bio-mimicry has being a bio-architecture which broadly-speaking, uses industrial processes to copy nature’s shapes and more recently, its functions. Although the outcomes of nature are pretty, and/or useful, we’re really only looking at the end products of hugely sophisticated systems. So the pursuit of ‘mimicking’ biological outputs doesn’t really interest me in a huge way because I’m more concerned with the way that the chemical hardware and software of natural systems are spatially entangled through metabolic processes to shape these kinds of events. When we simply replicate what we think nature has been doing, we do not understand the processes that we’re mimicking at a sufficiently deep level and ultimately we are still working within an industrial paradigm. The kind of architecture I’m dreaming of engages and designs with metabolism and for example, could produce buildings with organs and physiologies, which for example, process vital nutrients, filter our water and even produce energy. Potentially organ systems within buildings will help us transform our waste into rich soils or other products that may replenish, not deplete our environment. I hope this will be the future of architecture.

The kind of architecture I’m dreaming of produces buildings with organs and physiologies

My own practice seeks to identify alternative technological platforms to industrial technologies and culture, simply because they are so wide spread now that they’re causing an imbalance in the chemistry and the natural world. I am not fundamentally ‘against’ machines, but I am ‘against’ them being our only technological option. I would like to see a much greater range of technological platforms to help us deal with the challenges that humans face. By diversify our technological approaches hopefully, we’ll find that the inevitable imbalances between the different systems start to balance each other out. It reminds me of Ben Moor’s definition of “beauty” – to paraphrase – somebody is beautiful when all the imperfections cancel each other out. I think that’s very much the kind of condition that I would like us to technologically and culturally be at!

The path has already been shown by some pioneers of architecture inspired by the life, such as Richard Buckminster Fuller and Antoni Gaudí. More recently we can find other examples of Biomimicry, innovations inspired by nature, did humans begin to understand and accept the fact that technology can have some living systems properties? Is it possible a mind-changing?

I think that people have to observe our contemporary lives differently and wonder at the kind of technological advances that we have accesses to right now – even if, as William Gibson notes, they are unevenly distributed. Warren Ellis in particular reminds us to reflect on just how amazing our lives are when we are able to have a conversation from different parts of the world, send rockets to the International Space Station and understand that some people are actually living there – beyond the Earth atmosphere. So when we look with wonder at the technologies around us, we may actually begin to observe that the patterns within the internet appear to have some lifelike qualities and – teetering on the edge of the uncanny valley – machines and robots are becoming recognizably more lifelike. Yet, most of the times we fail to consider just how amazing these developments are, since we adapt to our surroundings very easily.

Technology follows, not leads, invention

We culturally edit our preferences to suit our technological developments and match them to cultural demands. Right now, we are living in an epoch where we do not expect our machines to be ‘alive’, so we ignore their liveliness and assimilate these incredible developments into the quotidian. But things are changing. We desire to live in a more ecologically connected world where human development may be good for, not bad for, our biosphere. So, we desire more lifelike technologies and perhaps we are beginning to recognize and design with more lively technologies in mind. In fact, this kind of collective appetite may be thought of an innovation driver in which technology follows, not leads invention. I think that in the idea of innovation driving cultural changing, culture plays a large part in established markets. For example, Symbiotica made the provocation in 2000 that we could produce ‘victimless meat’, thirteen years later Andras Forgacs has developed a technique that cultures meat like it was yeast with no cow deaths involved and the first very small squares of leather are being produced that are coveted by international fashion designers. The ‘victimless meat’ idea has also spurred on the idea of cooking with cultured meat – so collective desire manifests in many different forms through a variety of cultural expressions. In other words – it is not always science and technology that leads innovation. Indeed, one of the things that Next Nature Network highlights quite beautifully is the role of culture in innovation and the development of technology.

Assuming we as humans are co-evolving with technology. What can we do to steer this in a desired direction? Can we steer at all?

We have the power to shape our own technological evolution – even if we use ‘soft’ control to direct the outcomes. One of the really interesting things about having many different practices, paradigms and different kind of solving approaches through technology, is that we are increasing our ability to remain fluid and adaptive to change. We are definitely going to need resilience and adaptability as key drivers of human development in this century, if the predictions of an unstable earth and rapid increase in the number of people on the planet are correct. In facing these significant challenges we need not to just consider the amount of ‘life’ that we can support but invest in ensuring a good quality of life. A healthy relationship with technology may help us achieve this as I view technology as being the way that our minds are embodied in the process of problem solving. As this century unfolds, Nature will increasingly be the challenge that we need to address – so there will be an even tighter coupling between technology and the natural world than already exists.

You studied a protocell technology that could stop the city of Venice from sinking on its soft geological foundations by generating a sustainable, artificial reef under the foundations of Venice and spreading the point load of the city. How this project is close to become real and concrete?

This is a very interesting question, because I think it relates to the way that we envision the future. My Venice research is at a prototyping stage and it could be ready in 15 or 20 years. In reality the future is much more complex than just setting a linear time line on laboratory developments and prototypes, it’s contingent on many different events that are beyond the control of the designer. ‘The future’ is not an empirical quantity that can be guaranteed by setting up a chain of events – it is probabilistic. It is therefore only possible to orchestrate a diverse series of supporting events as best as possible to try to create the conditions in which a desired outcome is most likely. The advent of an artificial reef ultimately depends on many factors that are beyond my direct influence and require decentralized control over the project. Firstly, in my view, the people of Venice need to want this particular idea to happen. Its success also heavily depends on the political and economic situation and on my ability to raise funds and put together a team to make sure that the technology works in an environmentally enhancing way. Then the way that the technology and its relationship with the environment needs to work in ways that it has been imagined. If not, further research and development will need to be conducted to re-shape the possible outcomes in ways that continue to be desirable. There is nothing inevitable about the future, we need to continually negotiate it – on many different levels – and since we only have finite time and resources we may as well dedicate these to shaping the kind of outcomes that are important to us. If the idea of an artificial limestone reef under the foundations of the city of Venice is something that the citizens want and is supported by the government and external funders, then this greatly increases its likelihood.

What are the possible benefits and risks or negative aspects, if there are, in self-repairing architecture?

The benefits are that you don’t have to spend a lot of time, money and energy trying to work against nature or natural forces. Inert, or non-living systems, inevitably deteriorate due to the continual actions of nature that is not in equilibrium on their static surfaces.

This content is only accessible for members of Next Nature Network.
Join us and receive full access to all content, a yearly inspirational member gift and discount on all items in our webshop!

Log In Join